Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
نویسندگان
چکیده
Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the superresolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.
منابع مشابه
Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.
In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We...
متن کاملLocalized plasmonic structured illumination microscopy with an optically trapped microlens.
Localized plasmonic structured illumination microscopy (LPSIM) is a recently developed super resolution technique that demonstrates immense potential via arrays of localized plasmonic antennas. Microlens microscopy represents another distinct approach for improving resolution by introducing a spherical lens with a large refractive index to boost the effective numerical aperture of the imaging s...
متن کاملPlasmonic metal scattering immunoassay by total internal reflection scattering microscopy with nanoscale lateral resolution.
Immunoassays on nanopatterned chips through TIRS detection based on reconstructing the three dimensional position provided a nanoscale accuracy of the lateral resolution by using the z-stage controller in the spatial range up to 10 nm. This method offers highly accurate and sensitive quantification with the zeptomolar (∼10(-21) M) detection of proteins.
متن کاملTemperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy.
We report on a thermal imaging technique based on fluorescence polarization anisotropy measurements, which enables mapping the local temperature near nanometer-sized heat sources with 300 nm spatial resolution and a typical accuracy of 0.1 degrees C. The principle is demonstrated by mapping the temperature landscape around plasmonic nano-structures heated by near-infrared light. By assessing di...
متن کاملColor generation via subwavelength plasmonic nanostructures.
Recent developments in color filtering and display technologies have focused predominantly on high resolution, color vibrancy, high efficiency, and slim dimensions. To achieve these goals, metallic nanostructures have attracted extensive research interest due to their abilities to manipulate the properties of light through surface plasmon resonances. In this paper, we review recent representati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017